Top

Tag Archives | CAM

Collision Avoidance Moves into More Dynamic Automation Environments

Manufacturing environments are busy places with multiple machines, bustling workers and numerous machine-human interactions. Avoiding collisions between robots and humans is a high priority. Some solutions require a multilayered approach, integrating a variety of technologies, to create a reliable system. As more manufacturers add robots, there’s an increased interest in ensuring they work safely with each other and with humans.

Manufacturers that deploy robotic painters, such as the one shown here, can use a multilayered approach that integrates a variety of technologies to create a system that reliably reduces the risks of collisions. Courtesy of FANUC.

Manufacturers that deploy robotic painters, such as the one shown here, can use a multilayered approach that integrates a variety of technologies to create a system that reliably reduces the risks of collisions. Courtesy of FANUC.

Leveraging techniques from stacker cranes
Companies that increase their use of robotic automation can learn from collision avoidance techniques used with cranes, which received early attention because a collision with equipment in the work environment or the component itself was unacceptable. This posed a serious safety hazard that could cost thousands of dollars in lost production time and rework or scrap. By using 3D vision and industrial computers, collisions are now largely avoidable.
As technologies advance, dramatic system improvements are possible. That was the case with Boeing, which found its floor-based registration system for painting planes no longer provided the accuracy it needed. As a long-time partner to Boeing, Concept Systems Inc. stepped in to assist the aircraft manufacturer in addressing this issue by deploying a new collision avoidance system.

A key component of the new system adopted by Boeing in one of its paint hangers was the proximity query package (PQP), which can detect imminent collisions between two computer-generated objects. Information about the exact size and shape of the plane is exported from Boeing’s design software and then rendered as a 3D graphic in OpenGL, a widely accepted open graphics standard. It similarly renders the stacker platforms for validation and troubleshooting the system. Continue Reading →

Airplane Artists Aided by Advanced Motion Technology

Aircraft painting at Boeing’s Everett facility is a manually intensive operation performed by skilled artisans. Many of the paint schemes produced by the decorative painters at the facility are truly works of art. That art is now being facilitated by advanced motion technology that lets operator cranes reach within 4 inches of the aircraft without risk of contacting it.

Aircraft painting at Boeing’s Everett facility is a manually intensive operation performed by skilled artisans. Many of the paint schemes produced by the decorative painters at the facility are truly works of art. That art is now being facilitated by advanced motion technology that lets operator cranes reach within 4 inches of the aircraft without risk of contacting it.

The typical commercial airliner carries 800 pounds of paint. The paint’s primary function is corrosion protection to the aircraft skin. Requirements for the paint include: Durability to support the fuselage’s expansion with cabin pressurization, flexibility in all conditions, weather and temperature extremes, impact from hail and dust (at 600 mph); and resistance to salt spray and chemicals (hydraulic fluid, de-icer, etc.).

During operations to prep and paint the aircraft, painters navigate quickly around the aircraft on large working platforms mounted on cranes known as stackers. Each stacker (see picture) is an overhead-supported boom with four axes of movement: bridge, trolley, hoist, and rotate. Continue Reading →