Top

Tag Archives | robot safety

Standards revisions: robots and robotic systems

Automation standards update: The current version of the Industrial Robot Safety Standard, ANSI/RIA R15.06-2012, is a U.S. national adoption of the ISO 10218-2011, Part 1, Robots, and Part 2, Robotic Systems. Look for new versions of these documents in the 2020 or 2021 timeframe. Also see information on collaborative robots, loading and unloading stations, end-effectors, and lockout and tagout.

Author: Carole Franklin

Various standards and guidance documents govern and help those working with robotics and motion control. The current version of the Industrial Robot Safety Standard, ANSI/RIA R15.06-2012, is a U.S. national adoption of the ISO 10218-2011, Part 1, Robots, and Part 2, Robotic Systems. Those in compliance with the R15.06, 2012 version also are in compliance with the 10218, 2011 version. These standards will continue to be the current versions at least through 2020. Look for new versions of these documents in the 2020 or 2021 timeframe.

The ISO (international standards) group will begin updating the 10218 standard later this year; the revision process is expected to take about three years, which gives us the 2020 target publication date. Following that revision of the 10218, our standards committees in the U.S. will revise the R15.06 as well. In both the ISO and ANSI (U.S.) robotics communities, we currently are working on supplemental documents to help people apply these standards.

Some key things to know about robots and robotic systems:

  • For the purpose of ISO 10218 and ANSI/RIA R15.06, it’s important to distinguish between the terms “robot” and “robot system.”
  • “Robot” includes the robot arm and controller; “robot system” includes the robot, the end-effector (end-of-arm tooling or EOAT), and any other machinery, equipment, devices, etc., supporting the robot in performing its task.
  • The ISO 10218:1,2-2011 and ANSI/RIA R15.06:2012 require that a risk assessment be conducted for each integrated robot application. It is the integrator’s responsibility to ensure that this required risk assessment is completed.
  • RIA TR R15.306:2016 describes one task-based risk assessment method that meets the requirements of the standard.

Collaborative robotics, safety

In the U.S., these supplemental documents are registered with ANSI and are known as Technical Reports, or TRs. We are just about to publish a U.S. version of the ISO TS 15066:2016, the RIA TR R15.606-2016, on safety of collaborative robot systems. We also are starting work on two new TRs in the U.S., one of which is on guidance for users, which we hope to complete by the end of 2017; the other is on testing methods for power and force limiting for collaborative robot systems, which will likely be published in 2018.

In the ISO world, supplemental documents can be either Technical Reports (TRs), similar to the ANSI-registered TRs, or Technical Specifications (TSs). The difference is that the ISO TS describes requirements that are expected to mature to an International Standard (IS) level in the future. In the standards world, this means a TS is a “normative” document and can contain normative requirements. On the other hand, the TR is an “informative” document—that is, it cannot contain requirements but can only inform. The recently-published ISO TS 15066:2016 on collaborative robot safety is an example of a normative document. Because it is so recently published, it will not be revised for several years.

Some key things to know about collaborative robot safety include:

  • The application is key. There are some tasks which are simply not well suited to collaborative operation, even if the robot that is performing the task is power- and force-limited and called a “collaborative” robot.
  • The concept of a robot system is also important. The robot is not working in isolation. The workstation, the end-effector, the workpiece itself, the potential presence of multiple robots and other equipment in a cell are just some of the many factors that also must be taken into account when planning for a safe robotic installation. This is still the case even when using robots designed for collaboration.
  • A risk assessment of the collaborative robot system is also important. Even when using a robot designed for collaborative use, it’s really important to assess and mitigate any risks of the system—precisely because we anticipate people and robots working in close proximity.
  • It’s important to understand the foundational standard in addition to the collaborative supplement. TS 15066 builds upon the 10218 standard. That is, effective use of TS 15066 assumes that the robot system under consideration is in compliance with Part 1 and Part 2 of ISO 10218:2011.

Loading, unloading; end-effectors

The ISO group also is working on two TRs, both of which are expected to be completed in 2017. One is on the safety of manual load/unload stations, and the other is on end-effector safety.

Those with interest in robotics in food and beverage applications may be interested in a non-RIA standard.

The “3-A Sanitary Standard 3-A 103-00, Robot-based Automation Systems,” for use in the food industry, was published in September 2016, by 3-A Sanitary Standards Inc.

Outside the robot-specific world, there are some other standards on industrial safety that RIA members may want to know. These are the recently updated ANSI/ASSE Z244.1 on Lockout, Tagout and Alternative Methods, published in late 2016.

B11.20 on Safety Requirements for Integrated Manufacturing Systems is being updated right now, with an anticipated publication date in 2017.

Carole Franklin is director of standards development, Robotic Industries Association (RIA), part of Association for Advancing Automation (A3), a CFE Media content partner. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering, mhoske@cfemedia.com.

MORE ADVICE

Key concepts

  • ISO 10218-2011, Part 1, Robots, and Part 2, Robotic Systems, and the U.S. adoption of it, R15.06, will likely be revised in the 2020-2021 timeframe.
  • ISO TS 15066:2016 on collaborative robot safety was published in February 2016. The U.S. adoption of this, RIA TR R15.606-2016, will be published soon.
  • Standards covering lockout/tagout and safety of integrated manufacturing systems also are important.

 

View the original article and related content on Control Engineering

Copyright: Copyright 2017 CFE Media LLC

Collision Avoidance Key to Operator and Robot Safety

Manufacturing environments are busy, and avoiding collisions between robots and operators is a high priority. As more manufacturers add robots, there’s increasing interest in ensuring they work safely with each other and with people.

The robotics industry can take pride in its impressive safety record with more than 1.5 million industrial robots operating worldwide, according to Carole Frank, safety director for the Robotic Industries Association (RIA). As robotic applications increase, it’s vital to continue to be vigilant about robotic safety. In fact, risk assessment is now required by new safety regulations: ISO 10218-1 and -2 delineate safety requirements for robots, replacing ANSI/RIA R15.06.

Collision Avoidance

Many robots are certified by a third-party source or approved by their manufacturers. That’s good, but it’s also important to be sure the robot is safe in its surrounding environment. So take a holistic approach and evaluate each industrial application rather than each device separately. Continue Reading →