Top

Tag Archives | manufacturing

Preventing Extensive Downtime From Equipment Failure

When updating or maintaining older equipment, it’s important to have maximum visibility into plant operations and make every investment dollar count.

As a company that specializes in automation controls, we field a lot of different requests from clients who want a quick budgetary quote to retrofit an older piece of equipment. These requests usually come in after a piece of machinery has failed and the company has encountered one of three scenarios: 1) The company doesn’t have any documentation. 2) The last person to work on this machine has retired, and no one has been trained. 3) Replacement parts have finally become too difficult to find, even on eBay. There are other reasons, of course, but most often a client is responding to some situation that has left the company exposed to a much larger downtime risk than previously thought.

I want to discuss two different prevention techniques in hopes of providing some insight for companies to consider as they wrestle with keeping equipment current—and we all do! First, don’t be caught off guard with not knowing how and when a piece of equipment is likely to fail. There are several software options available today that provide performance data and maintenance scheduling, helping companies avoid unplanned downtime. Second, consider a machine retrofit as a way of preparing for tomorrow’s manufacturing instead of just reacting to a problem with a rush to update the machine.

Software solutions for machine monitoring have come a long way in the past five years. I don’t know if it can be considered a “mature” market, but there are many established providers that have proven their solutions. Conveniently for users, there are several options available from complete software platforms that monitor everything from CNCs, robots, PLCs and test stands to simple offerings that are designed to provide real-time monitoring per single device. Regardless of your specific needs, be assured that you have options that can be found with some basic Google searching. To make matters easier, a lot of these software providers offer their solutions via a software-as-a-service (SaaS) model, which reduces the risk of overcommitting and lowers upfront costs.

All this to say that it is wise to seriously consider employing a machine monitoring software tool of some sort sooner rather than later. The advantages of doing so far outweigh the risk. Consider some of the benefits: scheduled maintenance events based on known wear, use or observed conditions; dashboard monitoring and/or reporting available via desktop computer or mobile devices; uptime and throughput reports to monitor trends; and automated alarming provides alerts that will send alert condition messages to supervisory personnel to facilitate an immediate response. With so many software solutions available provided as flexible options like SaaS, it is a good time to develop and implement a strategy that takes the guessing out of machine monitoring.

The second key aspect to keep in mind when maintaining or updating older equipment is when you evaluate a retrofit investment, consider what you can do to make that piece of machinery or that production line ready for the Industrial Internet of Things (IIoT). In the not so distant future, experts predict whole manufacturing floors will be populated by intelligent machines that are able to monitor themselves, schedule their own maintenance and provide constant monitoring. This future state will allow machines to interoperate and create dramatic efficiencies not possible today. Machines will do this by dynamically adjusting to manufacturing conditions to ensure maximum efficiency. Although all of what is predicted is very exciting, we won’t get there overnight. The clear majority of manufacturers will use a phased approach to slowly migrate equipment to Industry 4.0 requirements over the next decade, since very few companies have the luxury of starting their production strategies from scratch.

Companies can prepare for the future by utilizing their automation roadmap, or 3- to 5-year manufacturing plan, to ensure that any investment made in a machine retrofit will not only be applicable in the future, but will also be an advantage as they phase in more Industry 4.0 equipment. Learn why an automation roadmap is essential to remaining competitive. Not sure how to get started? Learn how to get started on an automation roadmap.

There are several software options available today that provide performance data and maintenance scheduling, helping companies avoid unplanned downtime.

Here are some important things to consider with a retrofit: network compatibility, whether wired or wireless; security protocols to ensure all data is protected; virtualization (consider server consolidation and thin client architecture); and an interface that provides operators and decision-makers with valuable information to make appropriate, timely decisions.

In today’s world, the information coming at us is unlimited and it can feel like we are constantly reacting to issues and scenarios. When updating or maintaining older equipment, it is crucial that we take a proactive approach. To do this, ensure you have maximum visibility into plant operations as described above and make every investment dollar count when you retrofit equipment to be fully prepared for tomorrow’s manufacturing.

As a final comment, integrators certified by the Control System Integrators Association (CSIA) can be an invaluable resource whether you are considering manufacturing software or creating an automation roadmap. Often, integrators have worked in a vast range of manufacturing scenarios and they can leverage that knowledge to the benefit of the client.

Michael Lindley is vice president of business development and marketing at Concept Systems Inc., a certified member of the Control System Integrators Association. See Concept Systems’ profile on the Industrial Automation Exchange.

The internet of services in Industrie 4.0

Manufacturers need to think through their business model with the Industrial Internet of Things (IIoT) or Industrie 4.0 and ask how can a product become a service with a long-term revenue stream.

Author: Mike James

There is much talk about the Industrial Internet of Things (IIoT). However, ‘things’ are just part of the plumbing. We connect devices, giving them, no more than, nominal intelligence. The real innovation is the internet of services. Manufacturers need to think through their business model and ask how can a product become a service with a long-term revenue stream. Many manufacturers, however, recognize this and are exploiting the opportunity to improve their operations. For example,

Tesla is delivering vehicles with hardware and software which can be upgraded, their cars are sensor ready and software upgrades will provide extra intelligence, delivered via the internet. The customer could pay for the upgrades which then generates extra revenue for Tesla.

Otis is supplying elevators/lifts with sensors which send data into their cloud. The data is analyzed and Otis sells a predictive maintenance services package, again adding a long-term revenue stream.

Additionally, a catering company in The Netherlands is supplying custom meals to hospitals. Each meal is prepared for the patient based upon data received from the hospital about the patient’s needs. The meals are prepared in an automated plant.

The individualization of mass production and the internet of services add additional revenue. The smart manufacturing plant needs to be flexible and deliver intelligent products. A major misunderstanding is that this is not a cost saving exercise; it’s a new business model to increase revenue and profitability.

It’s important to map out opportunities and match them against the realities of today’s technology. A manufacturer who was heavily investing in a factory of the future did not build this type of strategy. Enthusiastic engineers ordered additive manufacturing (3-D printing machines only to learn they could not connect them to their network using international standards. They paid a heavy price for this error and damaged the initiative’s reputation. It’s worth taking independent advice before completing a company’s manufacturing strategy.

The best way to avoid these mistakes and build a successful strategy is to learn from other manufacturers in a safe space. MESA is a safe harbor to share best practices and lessons learned so that the industry can collectively rise to Industrie 4.0.

Mike James is chairman for MESA International Board of Directors. This article originally appeared on MESA International’s blog. MESA International is a CFE Media content partner. Edited by Chris Vavra, production editor, CFE Media, cvavra@cfemedia.com.

 

View the original article and related content on Control Engineering

Copyright: Copyright 2017 CFE Media LLC

Key Methods of Robotic Vision Technology

The idea of a machine being able to see, interpret, and respond to information based on visual input alone is not just science fiction. Robotic vision technologies have become an integral component to manufacturing, as well as packing and shipping, and continue to grow in other industries as well.

Appropriate lighting is the most significant factor in ensuring that these technologies are working properly, and we’ve compiled a few tips for creating the best lighting solutions for robotic vision systems that help ensure the safety and efficiency of your technology and your team.

Bright Lights

If you’re working with molds and are trying to identify missing material in the mold or product, a short shot can help you out. This is a short burst of bright light that quickly illuminates inconsistencies in a mold from above. This method requires the container of the target object to have a flat top surface; otherwise, what the robot sees would be distorted. Any coarse or rough textures on the top surface of the mold also make the images a little spotty.

Wavelength

On an assembly line for electronics, robotic vision is what helps machines detect if parts are oriented correctly as they pass on down the line so that they’re able to be put together properly. Different colors emit different wavelengths when reflecting light, and you can get equipment that reads the distinctions in wavelengths to quickly determine the variety of materials in your assembly line. This could be the difference between a part being put in with the correct orientation or not.

Nondiffused Light

When it comes to glass or other transparent products, especially when they’re blazing past employees on an assembly line, small cracks or fractures in the material can be difficult to detect with the naked eye. Nondiffused light provides an efficient solution, as it essentially shows up on these robotic vision screens as a bright accent in a very dark image—any brightness highlights the imperfection.

Diffuse Light

Your teacher in grade school may have challenged you to estimate how many marbles were in the prize jar, but manufacturing a jar with an exact amount of marbles inside requires far more precision and much less guesswork. Using diffuse light in robotic vision technology is essentially bathing the object in light from every direction to remove any shadow. The image created from this technique can be quickly assessed for missing volume content.

Vision technologies rely heavily on light to produce accurate images, so choosing the right lighting for your workcell is important. If you are considering integrating vision technology into your plant processes and aren’t sure where to start, send us an email at contact-us@conceptsystemsinc.com.

What You Need to Know About Industrial Painting Robots

Many years ago, robots ceased being an element of science fiction and futuristic trends. In fact, robots have been in use for more than 50 years in industrial and production settings. Robots were once large and expensive, and performed tasks too big or heavy for human workers. Today, smaller, specialized robots work side-by-side with humans in the same workspace, and cost a fraction of what they once did.

One area where robotics technology has excelled is in the area of industrial painting. Through specialized operator programming, an industrial painting robot is able to flawlessly and consistently produce a high-quality paint finish. The technology is used not only in large scale operations such as car manufacturing plants, but also in smaller settings that require a higher level of intricate and flexible responses, such as multi-component production.

By adding robotic vision technologies, industrial painting robots are able to analyze and inspect an object, determine the location of edges, recognize patterns, evaluate size, and a variety of other tasks. Robot vision is a combination of software, sensors, algorithms, and cameras that connect with the robot system and the application to guide it through a specified process. With this rapidly growing technology, robots can now recognize components, determine what parts to pick up or put down, and what areas to paint on an object. We can also program painting robots for pinpoint accuracy and unique specifications—no more drips or overspray issues.

Robotic technologies are providing new options for businesses, small and large, to compete in the global marketplace. Here are some of the ways that painting robots are changing the industrial and manufacturing landscape:

More Work, Less Space

  • With the development of slimmer, dual-armed models which have the capability of reaching farther, robots can be installed in smaller locations, such as a wall, a shelf, or even on a rail. This allows painting robots to perform a multitude of tasks using less space.
  • Additionally, through the development of anti-collision software, several robots are able to work in close proximity to one another without incident, performing joint or specialized tasks, which increases productivity.

Increased Workplace Safety

  • Workplace safety is a constant concern for all types of businesses, but especially in an industrial or manufacturing environment. In the past, robots were caged and secured in order to protect the human workers as well as the other robotic devices around them. Today, humans are able to work in close proximity to robots, and while safety procedures are still required, there is no longer the need for the complicated safety protocols of the past. Programming determines specific space proximities and limitations to enhance safety.
  • Exposure to hazardous materials has long been an issue in industrial settings. The chemical compounds found in paint are known to cause adverse health effects in human workers. Through robotic alternatives, such as using industrial painting robots, that risk is minimized.
  • Less hazardous waste is created due to the improved consistency of paint application by painting robots.

The business atmosphere of today demands high-quality product output, increased profitability, and the ability to adjust technology to meet not only the needs of the company, but also market demand. For 17 years, Concept Systems has provided the latest technological and innovative solutions for our customers’ operations. For information on a customized solution for your manufacturing and production needs, contact us.

Collision Avoidance Moves into More Dynamic Automation Environments

Manufacturing environments are busy places with multiple machines, bustling workers and numerous machine-human interactions. Avoiding collisions between robots and humans is a high priority. Some solutions require a multilayered approach, integrating a variety of technologies, to create a reliable system. As more manufacturers add robots, there’s an increased interest in ensuring they work safely with each other and with humans.

Manufacturers that deploy robotic painters, such as the one shown here, can use a multilayered approach that integrates a variety of technologies to create a system that reliably reduces the risks of collisions. Courtesy of FANUC.

Manufacturers that deploy robotic painters, such as the one shown here, can use a multilayered approach that integrates a variety of technologies to create a system that reliably reduces the risks of collisions. Courtesy of FANUC.

Leveraging techniques from stacker cranes
Companies that increase their use of robotic automation can learn from collision avoidance techniques used with cranes, which received early attention because a collision with equipment in the work environment or the component itself was unacceptable. This posed a serious safety hazard that could cost thousands of dollars in lost production time and rework or scrap. By using 3D vision and industrial computers, collisions are now largely avoidable.
As technologies advance, dramatic system improvements are possible. That was the case with Boeing, which found its floor-based registration system for painting planes no longer provided the accuracy it needed. As a long-time partner to Boeing, Concept Systems Inc. stepped in to assist the aircraft manufacturer in addressing this issue by deploying a new collision avoidance system.

A key component of the new system adopted by Boeing in one of its paint hangers was the proximity query package (PQP), which can detect imminent collisions between two computer-generated objects. Information about the exact size and shape of the plane is exported from Boeing’s design software and then rendered as a 3D graphic in OpenGL, a widely accepted open graphics standard. It similarly renders the stacker platforms for validation and troubleshooting the system. Continue Reading →

Transforming Mid-Sized Manufacturing Companies

How four automation technologies, with lower price points today, can dramatically change your manufacturing game.

From a birds-eye view of the industry, automation seems so pervasive. Yet even today, a surprisingly high number of companies still haven’t made the investment to streamline their production lines with modern automation technologies. This is especially true of mid-sized companies who have been waiting for hardware prices to decline. Many of these companies are now seeing their competitors implement automation solutions and gaining a significant advantage in the marketplace.

If this scenario sounds like your company, here are four applications to seriously consider that can springboard you to the front of the pack in 2016.

Vision Systems. Advanced laser scanning and other vision technologies, such as thermal imaging, near IR, and millimeter wave cameras, offer clear advantages because of their ability to see the environment beyond what the capabilities of the human eye and make real time decisions. Coupling this technology with robotics provides the ultimate in manufacturing flexibility, reliability, and efficiency and represents the current vanguard in manufacturing automation. Continue Reading →