Top

Tag Archives | CNC

Computer numerical control is the automation of machine tools that are operated by precisely programmed commands encoded on a storage medium.

Preventing Extensive Downtime From Equipment Failure

When updating or maintaining older equipment, it’s important to have maximum visibility into plant operations and make every investment dollar count.

As a company that specializes in automation controls, we field a lot of different requests from clients who want a quick budgetary quote to retrofit an older piece of equipment. These requests usually come in after a piece of machinery has failed and the company has encountered one of three scenarios: 1) The company doesn’t have any documentation. 2) The last person to work on this machine has retired, and no one has been trained. 3) Replacement parts have finally become too difficult to find, even on eBay. There are other reasons, of course, but most often a client is responding to some situation that has left the company exposed to a much larger downtime risk than previously thought.

I want to discuss two different prevention techniques in hopes of providing some insight for companies to consider as they wrestle with keeping equipment current—and we all do! First, don’t be caught off guard with not knowing how and when a piece of equipment is likely to fail. There are several software options available today that provide performance data and maintenance scheduling, helping companies avoid unplanned downtime. Second, consider a machine retrofit as a way of preparing for tomorrow’s manufacturing instead of just reacting to a problem with a rush to update the machine.

Software solutions for machine monitoring have come a long way in the past five years. I don’t know if it can be considered a “mature” market, but there are many established providers that have proven their solutions. Conveniently for users, there are several options available from complete software platforms that monitor everything from CNCs, robots, PLCs and test stands to simple offerings that are designed to provide real-time monitoring per single device. Regardless of your specific needs, be assured that you have options that can be found with some basic Google searching. To make matters easier, a lot of these software providers offer their solutions via a software-as-a-service (SaaS) model, which reduces the risk of overcommitting and lowers upfront costs.

All this to say that it is wise to seriously consider employing a machine monitoring software tool of some sort sooner rather than later. The advantages of doing so far outweigh the risk. Consider some of the benefits: scheduled maintenance events based on known wear, use or observed conditions; dashboard monitoring and/or reporting available via desktop computer or mobile devices; uptime and throughput reports to monitor trends; and automated alarming provides alerts that will send alert condition messages to supervisory personnel to facilitate an immediate response. With so many software solutions available provided as flexible options like SaaS, it is a good time to develop and implement a strategy that takes the guessing out of machine monitoring.

The second key aspect to keep in mind when maintaining or updating older equipment is when you evaluate a retrofit investment, consider what you can do to make that piece of machinery or that production line ready for the Industrial Internet of Things (IIoT). In the not so distant future, experts predict whole manufacturing floors will be populated by intelligent machines that are able to monitor themselves, schedule their own maintenance and provide constant monitoring. This future state will allow machines to interoperate and create dramatic efficiencies not possible today. Machines will do this by dynamically adjusting to manufacturing conditions to ensure maximum efficiency. Although all of what is predicted is very exciting, we won’t get there overnight. The clear majority of manufacturers will use a phased approach to slowly migrate equipment to Industry 4.0 requirements over the next decade, since very few companies have the luxury of starting their production strategies from scratch.

Companies can prepare for the future by utilizing their automation roadmap, or 3- to 5-year manufacturing plan, to ensure that any investment made in a machine retrofit will not only be applicable in the future, but will also be an advantage as they phase in more Industry 4.0 equipment. Learn why an automation roadmap is essential to remaining competitive. Not sure how to get started? Learn how to get started on an automation roadmap.

There are several software options available today that provide performance data and maintenance scheduling, helping companies avoid unplanned downtime.

Here are some important things to consider with a retrofit: network compatibility, whether wired or wireless; security protocols to ensure all data is protected; virtualization (consider server consolidation and thin client architecture); and an interface that provides operators and decision-makers with valuable information to make appropriate, timely decisions.

In today’s world, the information coming at us is unlimited and it can feel like we are constantly reacting to issues and scenarios. When updating or maintaining older equipment, it is crucial that we take a proactive approach. To do this, ensure you have maximum visibility into plant operations as described above and make every investment dollar count when you retrofit equipment to be fully prepared for tomorrow’s manufacturing.

As a final comment, integrators certified by the Control System Integrators Association (CSIA) can be an invaluable resource whether you are considering manufacturing software or creating an automation roadmap. Often, integrators have worked in a vast range of manufacturing scenarios and they can leverage that knowledge to the benefit of the client.

Michael Lindley is vice president of business development and marketing at Concept Systems Inc., a certified member of the Control System Integrators Association. See Concept Systems’ profile on the Industrial Automation Exchange.

Motion Control

A sub-field of automation, in which the position or velocity of machines are controlled using some type of device such as a hydraulic pump, linear actuator or electric motor, generally a servo. Motion control is an important part of robotics and CNC machine tools; however, it is more complex than in the use of specialized machines, where the kinematics are usually simpler. The latter is often called General Motion Control (GMC). Motion control is widely used in the packaging, printing, textile, semiconductor production and assembly industries.

Adding Senses to Robots Multiplies Manufacturing Value

Advancing technologies have given robots the ability to adapt to the environment around them, greatly increasing their value in production applications in manufacturing.

Watching a robot in action is a pretty cool thing. A six-axis robot can perform moves that are as good, or better, than the human arm, and it can do it fast! We regularly wow students on facility tours who get to see our robot demos in action, zipping from one position to another. I imagine this is the case for automation professionals as well. When touring a manufacturing facility and catch a glimpse of a robot in operation, I eagerly await the opportunity to stand in front of it and watch it do its thing. Maybe this is just my reaction. Am I the only robo-geek out there or do you feel the same?

Unfortunately, more often than not, I am let down by what the robot is actually doing: the same thing over and over, following the same path at the same speed. Beyond the initial wow factor generated by a lot of motion and maybe an innovative end-effector (end-of-arm tool), robots are not really doing anything very cool or providing the value they could be if they were to leverage advancing technology. Continue Reading →

Boeing Saves Money By Using System Integrator to Retrofit Existing Shot Peener Machines

The inconsistency in machinery controls created operation and maintenance inefficiencies at two Boeing plants in the state of Washington. With a control system upgrade, they were able to make the aging machines work like new — or possibly better — at a fraction of the cost of purchasing new machines.

The shot peener machines in Boeing’s Auburn and Frederickson plants were between 20 and 40 years old, and based on different, aging control technologies and hardware. Some machines used hardwired relay logic, while others had older Programmable Logic Controls (PLCs) and Computer Numerical Controls (CNCs). The inconsistency in machinery controls created operation and maintenance inefficiencies. Parts were becoming obsolete, and maintenance was becoming more expensive. Reliability was an issue. Managers knew that an upgrade was in order.

The aging equipment in question, seven shot peener machines, is used to form and contour the wings and also to harden the wing surfaces of 737, 777, and 767 aircraft. The process involves blasting the aluminum part at high speed with metal shot of different sizes depending on the operation. Larger shot diameters (as large as 0.54 inch) are used for forming and smaller diameters (as small as .028 inch) are used for cold working (i.e., surface hardening). The specialized shot peener machines are quite sizable. The Spanwise Peener machine is 3 1/2 stories high — large enough to fit the wing skin of a 747 aircraft. Continue Reading →